Jaison's ink

Back

Problem Set #0#

专有名词翻译#

%% 供使用中文线性代数教材的学生使用 %%
diagonal 对角的
diagonalizable 可对角化的
PSD - positive semi-definite 半正定
symmetric 对称的
null-space 其实就是kernel 即”核“
characteristic polynomial 特征多项式
spectral theorem 谱定理
orthogonal 正交的
eigenvector 特征向量
eigenvalue 特征值

Q.1(d)题目中只给了g is continuously differentiable,为什么可以说它有二阶导数?#

连续可导不一定能推二阶导数存在。
经典反例:

f(x)={x3sin(1x)x00x=0f(x)=\left\{ \begin{array}{ll} x^{3} \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0 \end{array} \right.

其二阶导数在0处不存在

f(0)=limh03h2sin(1/h)hcos(1/h)h=limh0[3hsin(1h)cos(1h)] \begin{aligned} f''(0) &= \lim_{h \to 0} \frac{3h^2 \sin(1/h) - h \cos(1/h)}{h} \\ &= \lim_{h \to 0} \left[3h \sin\left(\frac{1}{h}\right) - \cos\left(\frac{1}{h}\right)\right] \end{aligned}

3hsin(1h)3h \sin(\frac{1}{h}) 为常数,而 cos(1h)\cos(\frac{1}{h}) 振荡。

CS229作业生存指南
https://astro-pure.js.org/blog/cs229_problem_set_0/cs229%E4%BD%9C%E4%B8%9A%E7%94%9F%E5%AD%98%E6%8C%87%E5%8D%970
Author Jaison
Published at August 21, 2025
Comment seems to stuck. Try to refresh?✨